Oxide Ion Conductivity in the Hexagonal Perovskite Derivative Ba3MoNbO8.5.

نویسندگان

  • Sacha Fop
  • Janet M S Skakle
  • Abbie C McLaughlin
  • Paul A Connor
  • John T S Irvine
  • Ronald I Smith
  • Eve J Wildman
چکیده

Oxide ion conductors are important materials with a range of technological applications and are currently used as electrolytes for solid oxide fuel cells and solid oxide electrolyzer cells. Here we report the crystal structure and electrical properties of the hexagonal perovskite derivative Ba3MoNbO8.5. Ba3MoNbO8.5 crystallizes in a hybrid of the 9R hexagonal perovskite and palmierite structures. This is a new and so far unique crystal structure that contains a disordered distribution of (Mo/Nb)O6 octahedra and (Mo/Nb)O4 tetrahedra. Ba3MoNbO8.5 shows a wide stability range and exhibits predominantly oxide ion conduction over a pO2 range from 10-20 to 1 atm with a bulk conductivity of 2.2 × 10-3 S cm-1 at 600 °C. The high level of conductivity in a new structure family suggests that further study of hexagonal perovskite derivatives containing mixed tetrahedral and octahedral geometry could open up new horizons in the design of oxygen conducting electrolytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical properties of perovskite-type lithium ionic conductor

The purpose of this chapter is to understand the ionic conduction of perovskite-type oxides. It is based on the fundamental theories of perovskite structure, ionic conductivity, conductivity measurement, X-ray diffraction and Rietveld analysis, and nuclear magnetic resonance (NMR). Typical examples of lithium ionic conductor are introduced. Introduction Perovskite-type oxides have been consider...

متن کامل

Stability and Electric Conductivity of Barium Cerate Perovskites Co-Doped with Praseodymium

Co-doping of yttrium doped mixed barium cerate/zirconate perovskite (BCZY) with small amounts of Pr (BCZYP) substantially increases electrical conductivity while retaining structural and chemical stability. BCZYP is predominantly a proton conductor at temperatures up to 600-650 ̊C, whereas it is a mixed proton/oxide ion/electron conductor at higher temperatures. The co-doped BCZYP perovskite can...

متن کامل

Synthesis of hexagonal lanthanum germanate apatites through site selective isovalent doping with yttrium

2 Abstract Apatite-type lanthanum silicates/germanates have been attracting considerable interest as a new class of oxide ion conductors, whose conductivity is mediated by oxide ion interstititials. For the germanates, it has been shown that, depending on composition, the cell can be either hexagonal or triclinic, with evidence for reduced low temperature conductivities for the latter, attribut...

متن کامل

Nb5+-Doped SrCoO3−δ Perovskites as Potential Cathodes for Solid-Oxide Fuel Cells

SrCoO3-δ outperforms as cathode material in solid-oxide fuel cells (SOFC) when the three-dimensional (3C-type) perovskite structure is stabilized by the inclusion of highly-charged transition-metal ions at the octahedral positions. In a previous work we studied the Nb incorporation at the Co positions in the SrCo1-xNbxO3-δ system, in which the stabilization of a tetragonal P4/mmm perovskite sup...

متن کامل

Structural origin of the enhanced ionic conductivity upon Nb doping in Sr11Mo4O23 defective double perovskite.

We report a substantial enhancement of the oxide-ion conductivity in Sr11Mo4O23 achieved by Nb doping the Mo sites. This series responds to the formula: Sr11Mo4-xNbxO23-δ (with x = 0.0, 0.5 and 1.0). The original structure can be related to the conventional double perovskite; however, it presents a broken corner sharing connectivity of the octahedral framework, hence leading to a complex and hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 138 51  شماره 

صفحات  -

تاریخ انتشار 2016